Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Vet J ; 13(4): 427-432, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37251269

RESUMO

Background: Accurate dose assessment during animal radiotherapy is beneficial for veterinary medicine and medical education. Aim: To visualize the radiation treatment distribution of orthovoltage X-ray equipment in clinical practice using Monte Carlo simulations and create a dog skull water phantom for animal-specific radiotherapy. Methods: EGSnrc-based BEAMnrc and DOSXYZnrc codes were used to simulate orthovoltage dose distributions. At 10, 20, 30, 40, 50, and 80 mm in a water phantom, the depth dose was measured with waterproof Farmer dosimetry chambers, and the diagonal off-axis ratio was measured with Gafchromic EBT3 film to simulate orthovoltage dose distributions. Energy differences between orthovoltage and linear accelerated radiotherapy were assessed with a heterogeneous bone and tissue virtual phantom. The animal-specific phantom for radiotherapy quality assurance (QA) was created from CT scans of a dog and printed with a three-dimensional printer using polyamide 12 nylon, with insertion points for dosimetry chambers and Gafchromic EBT3 film. Results: Monte Carlo simulated and measured dose distributions differed by no more than 2.0% along the central axis up to a depth of 80 mm. The anode heel effect occurred in shallow areas. The orthovoltage radiotherapy percentage depth dose in bone was >40%. Build-up was >40%, with build-down after bone exit, whereas linear accelerator radiotherapy absorption changed little in the bone. A highly water-impermeable, animal-specific dog skull water phantom could be created to evaluate dose distribution. Conclusion: Animal-specific water phantoms and Monte Carlo simulated pre-treatment radiotherapy are useful QA for orthovoltage radiotherapy and yield a visually familiar phantom that will be useful for veterinary medical education.


Assuntos
Radiometria , Água , Cães , Animais , Raios X , Radiometria/veterinária , Radiometria/métodos , Crânio , Impressão Tridimensional
2.
Med Dosim ; 47(2): e13-e18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34991966

RESUMO

We evaluated the probabilistic randomness of predictions by using individual numerical data based on general data for treatment planning computed tomography (CT) and evaluated the importance of patient-specific management through statistical analysis of our facility's data in lung stereotactic body radiotherapy (SBRT) and prostate volumetric modulated arc therapy (VMAT). The subjects were 30 patients who underwent lung SBRT with fiducial markers and 24 patients who underwent prostate VMAT. The average 3-dimensional (3D) displacement error between the fiducial marker and lung mass in 4DCT of lung SBRT was calculated and then compared with the 3D displacement error between the upper-lobe group (UG) and middle- or lower-lobe group (LG). The duty cycles between the lung tumor and fiducial marker at the <2-mm3 ambush area were compared between the UG and LG. In the prostate VMAT, the Shewhart control chart was analyzed by comparing multiple acquisition planning CT (MPCT) and cone-beam CT (CBCT) during the treatment period. The average 3D displacement errors in 4DCT for the lung tumor and fiducial marker were significantly different between the UG and middle- or lower-lobe group, but there was no correlation with the duty cycle. The Shewhart control chart for 3D displacement errors of the prostate for MPCT and CBCT showed that errors of >8 mm exceeded the control limit. In lung SBRT and prostate VMAT, overall statistical data from planning CT showed probabilistic randomness in predictions during the treatment period, and patient-specific motion management was needed to increase accuracy. A radiotherapy planning CT report showing a statistical analysis graph would be useful to objective share with staff.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Masculino , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X
3.
Med Dosim ; 46(1): e5-e10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32921553

RESUMO

This study aimed to evaluate the optimal method for planning computed tomography (CT) for prostate cancer radiotherapy to avoid a dose difference of ≥3% between the actual and planned treatments using multiple acquisition planning CT (MPCT). We calculated the 3-dimensional (3D) displacement error between the pelvic bone and matching fiducial marker on MPCT and cone-beam CT scans of 25 patients who underwent prostate volumetric-modulated arc therapy for prostate cancer. The correlation of the 3D displacement error and the dose difference between planned and actual treatments was calculated using least squares second-order polynomial model. The 3D displacement error showed a moderate correlation with differences between planned and accumulated treatment doses (r = 0.587, p < 0.0001). Moreover, the improvement rate of the minimum 3D displacement error showed a strong correlation with the relative error between each MPCT image (r = 0.793, p < 0.0001). Significant differences were observed between planned and actual treatment doses (p < 0.0001) in the relative 3D displacement errors of <1 mm, 1 to 3 mm, and >3 mm. The 3D displacement error on MPCT (as the selection estimation index for optimal planning CT) is useful for monitoring patient-specific intensity-modulated radiation therapy quality assurance. This new method allows to estimate dose differences from the planned dose before commencing treatment, thereby ensuring high-quality therapy. As radiotherapy quality is critical for patient outcome, these findings may contribute to better management of prostate cancer.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Med Dosim ; 45(3): 213-218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32008885

RESUMO

This study aimed to evaluate a new method to optimize planning computed tomography (CT) using three-dimensional (3D) displacement error between the planning and diagnosed past CT scans. Thirty-two patients undergoing volumetric modulated arc therapy for prostate cancer were evaluated for a 3D displacement error between bone- and prostate-matching spatial coordinates using multiple acquisition planning CT (MPCT) scans. Each MPCT image and a past CT image were used to perform rigid image registration (RIR) and deformable image registration (DIR), and the 3D displacement error was calculated. Correlations of the 3D displacement error in each MPCT scan and between the MPCT and past CT were evaluated based on RIR and DIR, respectively. The 3D displacement error in the MPCT images exhibited moderate correlation with the 3D displacement error between MPCT and past CT for both RIR (adjusted r2 = 0.495) and DIR (adjusted r2 = 0.398). In the correlation analysis between MPCT and past CT, image pairs with 3D displacement errors ≥ 6 mm were significantly different from those with errors < 6 mm (p < 0.0001). Past CT images were different from the planning CT images, which can be attributed to setup tools, flat-top plates, and physical differences due to the presence or absence of urine as well as prescription effects. The relationship between bone and prostate exhibited small deviations between the planning and past CT regardless of pretreatment. The prostate, which only has a slight effect on the displacement between it and bladder volume, was covered with a stiff pelvic bone. As a result, MPCT images exhibited correlations with past CT images of various difference states such as body positions. Finally, large 3D displacement errors in prostate position were caused by pelvic tension and stress, which can be detected using diagnosed past CT images instead of requiring MPCT scans. By comparing past and planning CT images, the random displacement error in the planning CT scan can be avoided by evaluating 3D displacement errors. The new method using the past CT images can estimate the displacement error of the prostate during the treatment period with 1 plan CT scan only, and it helps improve the treatment accuracy.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Masculino , Estudos Retrospectivos
5.
Med Dosim ; 44(4): e39-e43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30642696

RESUMO

To estimate the relationship between the three-dimensional (3D) displacement error of the prostate and rectal deformation for reduction of deviation between the planned and treatment dose, using multiple acquisition planning CT (MPCT) and the Dice similarity coefficient (DSC) for rectal deformation for treatment of patients with prostate cancer. The 3D displacement error between the pelvic bone and a matching fiducial marker was calculated using MPCT in 24 patients who underwent prostate volumetric-modulated arc therapy for prostate cancer. We calculated the 3D displacement error between the pelvic bone and a matching fiducial marker on MPCT. The correlation of the 3D displacement error with the DSC of the rectum, calculated from MPCT images, was evaluated based on deformable image registration. The 3D displacement error of the prostate showed a slight correlation between MPCT and cone-beam computed tomography (adjusted r2 = 0.241). The 3D displacement error, based on the pelvic bone and a fiducial marker on MPCT images, showed a moderate correlation with the DSC of the rectum (adjusted r2 = 0.645) and was improved by a mean of 3.94 mm, based on MPCT, during the treatment period. The 3D displacement error on MPCT correlates with the 3D displacement error of daily cone-beam computed tomography; optimal selection of MPCT can potentially facilitate on-board setup of prostate patients to enable more accurate radiotherapy. The advance information of the 3D displacement error and rectal deformation is useful for optimal planning CT that can minimize the deviation between the planned dose and the treatment dose in patients receiving treatment for prostate cancer.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/anatomia & histologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Ossos Pélvicos/anatomia & histologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...